
III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 1

UNIT –2 :Problem Solving: State-Space Search and Control Strategies:

Introduction, General Problem Solving, Characteristics of Problem, Exhaustive

searches, heuristic search techniques, iterative deepening a*, Constraint

Satisfaction

Problem Reduction and Game Playing: Introduction, problem reduction,

game playing, alpha-beta pruning, two-player perfect information games

2. Problem Solving – Basic Search methods

Problem Characteristics

 Heuristic search is a very general method applicable to a large class of

problem.

 In order to choose the most appropriate method (or combination of

methods) for a particular problem it is necessary to analyze the problem

along several key dimensions.

 Is the problem decomposable into a set of independent smaller sub

problems?

 Decomposable problems can be solved by the divide-and-

conquer technique.

 Use of decomposing problems:

 Each sub-problem is simpler to solve.

 Each sub-problem can be handed over to a different processor.

Thus can be solved in parallel processing environment.

 There are non decomposable problems.

 For example, Block world problem is non decomposable.

2.1.Problem Solving

 AI programs have a clean separation of

 computational components of data,

 operations & control.

 Search forms the core of many intelligent processes.

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 2

 It is useful to structure AI programs in a way that facilitates describing

the search process.

Production System – PS

 PS is a formation for structuring AI programs which facilitates describing

search process.

 It consists of

 Initial or start state of the problem

 Final or goal state of the problem

 It consists of one or more databases containing information

appropriate for the particular task.

 The information in databases may be structured

 using knowledge representation schemes.

Production Rules

 PS contains set of production rules,

 each consisting of a left side that determines the applicability of

the rule and

 a right side that describes the action to be performed if the rule is

applied.

 These rules operate on the databases.

 Application of rules change the database.

 A control strategy that specifies the order in which the rules will be

applied when several rules match at once.

 One of the examples of Production Systems is an Expert System.

Advantages of PS

 In addition to its usefulness as a way to describe search, the production

model has other advantages as a formalism in AI.

 It is a good way to model the strong state driven nature of

intelligent action.

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 3

 As new inputs enter the database, the behavior of the system

changes.

 New rules can easily be added to account for new situations

without disturbing the rest of the system, which is quite important

in real-time environment.

Example : Water Jug Problem

 Problem statement:

 Given two jugs, a 4-gallon and 3-gallon having no measuring

markers on them. There is a pump that can be used to fill the jugs

with water. How can you get exactly 2 gallons of water into 4-

gallon jug.

 Solution:

 State for this problem can be described as the set of ordered pairs

of integers (X, Y) such that

 X represents the number of gallons of water in 4-gallon jug

and

 Y for 3-gallon jug.

 Start state is (0,0)

 Goal state is (2, N) for any value of N.

Production Rules

 Following are the production rules for this problem.

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 4

R6: (X, Y | X+Y >= 3 X > 0) (X – (3 – Y), 3)

 {Pour water from 4-gallon jug into 3-

 gallon jug until 3-gallon jug is full}

R7: (X, Y | X+Y <= 4 Y > 0) (X+Y, 0)

 {Pour all water from 3-gallon jug into

 4-gallon jug }

R8: (X, Y | X+Y <= 3 X > 0) (0, X+Y)

 {Pour all water from 4-gallon jug into

 3-gallon jug }

Superficial Rules: {May not be used in this problem}

R9: (X, Y | X > 0) (X – D, Y)

 {Pour some water D out from 4-gallon jug}

R10: (X, Y | Y > 0) (X, Y - D)

 {Pour some water D out from 3- gallon jug}

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 5

Trace of steps involved in solving the water jug problem - First solution

Trace of steps involved in solving the water jug problem - Second

solution

 Note that there may be more than one solutions.

 For each problem

 there is an initial description of the problem.

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 6

 final description of the problem.

 more than one ways of solving the problem.

 a path between various solution paths based on some criteria of

goodness or on some heuristic function is chosen.

 there are set of rules that describe the actions called production

rules.

 Left side of the rules is current state and right side describes

new state that results from applying the rule.

 Summary: In order to provide a formal description of a problem, it is

necessary to do the following things:

 Define a state space that contains all the possible configurations of

the relevant objects.

 Specify one or more states within that space that describe possible

situations from which the problem solving process may start.

These states are called initial states.

 Specify one or more states that would be acceptable as solutions to

the problem called goal states.

 Specify a set of rules that describe the actions. Order of application

of the rules is called control strategy.

 Control strategy should cause motion towards a solution.

2.2 Control Strategies

 Control Strategy decides which rule to apply next during the process of

searching for a solution to a problem.

 Requirements for a good Control Strategy

 It should cause motion

 In water jug problem, if we apply a simple control strategy of starting

each time from the top of rule list and choose the first applicable one, then we

will never move towards solution.

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 7

 It should explore the solution space in a systematic manner

 If we choose another control strategy, say, choose a rule randomly from

the applicable rules then definitely it causes motion and eventually will lead to

a solution. But one may arrive to same state several times. This is

because control strategy is not systematic.

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 8

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 9

Traveling Salesman Problem

 Consider 5 cities.

 A salesman is supposed to visit each of 5 cities.

 All cities are pair wise connected by roads.

 There is one start city.

 The problem is to find the shortest route for the salesman who has

to

 visit each city only once and

 returns to back to start city.

 A simple motion causing and systematic control structure could, in

principle solve this problem.

 Explore the search tree of all possible paths and return the shortest

path.

 This will require 4! paths to be examined.

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 10

 If number of cities grow, say 25 cities, then the time required to wait a

salesman to get the information about the shortest path is of 0(24!)

which is not a practical situation.

 This phenomenon is called combinatorial explosion.

 We can improve the above strategy as follows:

 Begin generating complete paths, keeping track of the shortest

path found so far.

 Give up exploring any path as soon as its partial length becomes

greater than the shortest path found so far.

 This algorithm is efficient than the first one, still requires

exponential time some number raised to N (number of cities).

a. Missionaries and Cannibals

 Problem Statement: Three missionaries and three cannibals want to cross

a river. There is a boat on their side of the river that can be used by

either one or two persons.

 How should they use this boat to cross the river in such a way that

cannibals never outnumber missionaries on either side of the

river? If the cannibals ever outnumber the missionaries (on either

bank) then the missionaries will be eaten. How can they all cross

over without anyone being eaten?

 PS for this problem can be described as the set of ordered pairs of left

and right bank of the river as (L, R) where each bank is represented as a

list [nM, mC, B]

 n is the number of missionaries M, m is the number of cannibals

C, and B represents boat.

 Start state: ([3M, 3C, 1B], [0M, 0C, 0B]),

 1B means that boat is present and 0B means it is not there on the

bank of river.

 Goal state: ([0M, 0C, 0B], [3M, 3C, 1B])

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 11

 Any state: ([n1M, m1C, 1B], [n2 M, m2 C, 0B]) , with

constraints/conditions as n1 (0) ≥ m1; n2 (0) ≥ m2; n1 + n2 = 3, m1 +

m2 = 3

 By no means, this representation is unique.

 In fact one may have number of different representations for the

same problem.

 The table on the next slide consists of production rules based on

the chosen representation.

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 12

2.3 State Space Search for Solving problems

 State space is another method of problem representation that facilitates

easy search similar to PS.

 In this method also problem is viewed as finding a path from start state

to goal state.

 A solution path is a path through the graph from a node in a set S to a

node in set G.

 Set S contains start states of the problem.

 A set G contains goal states of the problem.

 The aim of search algorithm is to determine a solution path in the graph.

 A state space consists of four components.

 Set of nodes (states) in the graph/tree. Each node represents the

state in problem solving process.

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 13

 Set of arcs connecting nodes. Each arc corresponds to operator

that is a step in a problem solving process.

 Set S containing start states of the problem.

 Set G containing goal states of the problem.

2.3.1.The 8-Puzzle

Problem Statement:

 The eight puzzle problem consists of a 3 x 3 grid with 8 consecutively

numbered tiles arranged on it.

 Any tile adjacent to the space can be moved on it.

 Solving this problem involves arranging tiles in the goal state from the

start state.

Solution by State Space method

 The start state could be represented as: [[3,7,2], [5,1, 2], [4,0,6]]

 The goal state could be represented as: [[5,3,6] [7,0,2], [4,1,8]]

The operators can be thought of moving {up, down, left, right}, the direction in

which blank space effectively moves.

 Start state Goal state

3 7 6 5 3 6

5 1 2 7 2

 4 8 4 1 8

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 14

Searching for a Solution

 Problem can be solved by searching for a solution.

 Transform initial state of a problem into some final goal state.

 Problem can have more than one intermediate states between start and

goal states.

 All possible states of the problem taken together are said to form

 a state space or

 problem state and

 search is called state space search.

 Search is basically a procedure to discover a path through a problem

space from initial state to a goal state.

 There are two directions in which such a search could proceed.

 Data driven search, forward, from the start state

Goal driven search, backward, from the goal state

Initial State

 3 7 6

5 1 2

6 8

up

left

 right

 3 7 6

5 2

6 1 8

 3 7 6

5 1 2

 6 8

 3 7 6

5 1 2

6 8

up

 left

 right

3 6

5 7 2

6 1 8

 3 7 6

 5 2

6 1 8

 3 7 6

5 2

6 1 8

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 15

2.3.2.Forward Reasoning (Chaining):

 It is a control strategy that starts with known facts and works towards a

conclusion.

 For example in 8 puzzle problem, we start from initial state to goal state.

 In this case we begin building a tree of move sequences with initial state

as the root of the tree.

 Generate the next level of the tree by finding all rules whose left sides

match with root and use their right side to create the new state.

 Continue until a configuration that matches the goal state is generated.

 Language OPS5 uses forward reasoning rules. Rules are expressed in the

form of “if-then rule”.

 Find out those sub-goals which could generate the given goal.

2.3.3. Backward Reasoning (Chaining)

 It is a goal directed control strategy that begins with the final goal.

 Continue to work backward, generating more sub goals that must also be

satisfied in order to satisfy main goal.

 Prolog (Programming in Logic) uses this strategy.

2.4. General Purpose Search Strategies:

 Breadth First Search (BFS)

 It expands all the states one step away from the initial state, then

expands all states two steps from initial state, then three steps

etc., until a goal state is reached.

 It expands all nodes at a given depth before expanding any nodes

at a greater depth.

 All nodes at the same level are searched before going to the next

level down.

 For implementation, two lists called OPEN and CLOSED are

maintained.

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 16

 The OPEN list contains those states that are to be expanded

and CLOSED list keeps track of states already expanded.

 Here OPEN list is used as a queue.

Algorithm (BFS)

Input: Two states in the state space START and GOAL

Local Variables: OPEN, CLOSED, STATE-X, SUCCS

Output: Yes or No

Method:

• Initially OPEN list contains a START node and CLOSED list is empty;

Found = false;

 While (OPEN empty and Found = false)

 Do {

 Remove the first state from OPEN and call it STATE-X;

 Put STATE-X in the front of CLOSED list;

 If STATE-X = GOAL then Found = true else

 {- perform EXPAND operation on STATE-X, producing a list of

SUCCESSORS;

 - Remove from successors those states, if any, that are in the

 CLOSED list;

 - Append SUCCESSORS at the end of the OPEN list /*queue*/

} } /* end while */

 If Found = true then return Yes else return No and Stop

Depth-First Search

 In depth-first search we go as far down as possible into the search tree /

graph before backing up and trying alternatives.

 It works by always generating a descendent of the most recently

expanded node until some depth cut off is reached

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 17

 then backtracks to next most recently expanded node and

generates one of its descendants.

 So only path of nodes from the initial node to the current node is stored

in order to execute the algorithm.

 For implementation, two lists called OPEN and CLOSED with the same

conventions explained earlier are maintained.

 Here OPEN list is used as a stack.

 If we discover that first element of OPEN is the Goal state, then

search terminates successfully else move it to closed list and stack

its successor in open list.

Algorithms (DFS)

Input: Two states in the state space, START and GOAL

LOCAL Variables: OPEN, CLOSED, RECORD-X, SUCCESSORS

Output: A path sequence if one exists, otherwise return No

Method:

 Form a stack consisting of (START, nil) and call it OPEN list. Initially set

CLOSED list as empty; Found = false;

 While (OPEN empty and Found = false) DO

{

• Remove the first state from OPEN and call it RECORD-X;

• Put RECORD-X in the front of CLOSED list;

• If the state variable of RECORD-X= GOAL,

 then Found = true

Else

{ - Perform EXPAND operation on STATE-X, a state

variable of RECORD-X, producing a list of action records called

SUCCESSORS; create each action record by associating with each

state its parent.

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 18

 - Remove from SUCCESSORS any record whose state

variables are in the record already in the CLOSED list.

 - Insert SUCCESSORS in the front of the OPEN list

/* Stack */

}

}/* end while */

 If Found = true then return the plan used /* find it by tracing through

the pointers on the CLOSED list */ else return No

 Stop

Comparisons

 DFS

 is effective when there are few sub trees in the search tree that

have only one connection point to the rest of the states.

 can be dangerous when the path closer to the START and farther

from the GOAL has been chosen.

 Is best when the GOAL exists in the lower left portion of the search

tree.

 Is effective when the search tree has a low branching factor.

 BFS

 can work even in trees that are infinitely deep.

 requires a lot of memory as number of nodes in level of the tree

increases exponentially.

 is superior when the GOAL exists in the upper right portion of a

search tree.

Depth First Iterative Deepening (DFID)

 DFID is an iterative method that expands all nodes at a given depth

before expanding any nodes at greater depth.

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 19

 For a given depth d, DFID performs a DFS and never searches deeper

than depth d and d is increased by 1 in next iteration if solution is not

found.

 Advantages:

 It takes advantages of both the strategies (BFS & DFS) and suffers

neither the drawbacks of BFS nor of DFS on trees

 It is guaranteed to find a shortest - length (path) solution from

initial state to goal state (same as BFS).

 Since it is performing a DFS and never searches deeper than depth

d. the space it uses is O(d) (same as DFS).

 Disadvantages:

 DFID performs wasted computation prior to reaching the goal

depth but time complexity remains same as that of BFS and DFS

2.5. Various Heuristic Searches:

Heuristic Search

 Heuristics are criteria for deciding which among several alternatives be

the most effective in order to achieve some goal.

 Heuristic is a technique that

 improves the efficiency of a search process possibly by sacrificing

claims of systematicity and completeness.

 It no longer guarantees to find the best answer but almost always

finds a very good answer.

 Using good heuristics, we can hope to get good solution to hard

problems (such as travelling salesman) in less than exponential

time.

 There are general-purpose heuristics that are useful in a wide

variety of problem domains.

 We can also construct special purpose heuristics, which are

domain specific.

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 20

2.5.1.General Purpose Heuristics

 A general-purpose heuristics for combinatorial problem is

 Nearest neighbor algorithms which works by selecting the locally

superior alternative.

 For such algorithms, it is often possible to prove an upper bound

on the error which provide reassurance that one is not paying too

high a price in accuracy for speed.

 In many AI problems,

 it is often hard to measure precisely the goodness of a particular

solution.

 But still it is important to keep performance question in mind

while designing algorithm.

 For real world problems,

 it is often useful to introduce heuristics based on relatively

unstructured knowledge.

 It is impossible to define this knowledge in such a way that

mathematical analysis can be performed.

 In AI approaches,

 behavior of algorithms are analyzed by running them on computer

as contrast to analyzing algorithm mathematically.

 There are at least two reasons for the adhoc approaches in AI.

 It is a lot more fun to see a program do something intelligent than

to prove it.

 AI problem domains are usually sufficiently complex, so generally

not possible to produce analytical proof that a procedure will work.

 It is even not possible to describe the range of problems well

enough to make statistical analysisof program behavior

meaningful.

 One of the most important analysis of the search process is

straightforward i.e.,

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 21

 Number of nodes in a complete search tree of depth D and

branching factor F is F*D .

 This simple analysis motivates to

 look for improvements on the exhaustive search.

 find an upper bound on the search time which can be compared

with exhaustive search procedures.

2.5.2. Informed Search Strategies- Branch & Bound Search

 It expands the least-cost partial path. Sometimes, it is called uniform

cost search.

 Function g(X) assigns some cumulative expense to the path from Start

node to X by applying the sequence of operators .

 For example, in salesman traveling problem, g(X) may be the actual

distance from Start to current node X.

 During search process there are many incomplete paths contending for

further consideration.

 The shortest one is extended one level, creating as many new incomplete

paths as there are branches.

 These new paths along with old ones are sorted on the values of function

g.

 The shortest path is chosen and extended.

 Since the shortest path is always chosen for extension, the path first

reaching to the destination is certain to be nearly optimal.

 Termination Condition:

 Instead of terminating when a path is found, terminate when the

shortest incomplete path is longer than the shortest complete path.

 If g(X) = 1, for all operators, then it degenerates to simple Breadth-First

search.

 It is as bad as depth first and breadth first, from AI point of view,.

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 22

 This can be improved if we augment it by dynamic programming i.e.

delete those paths which are redundant.

Hill Climbing- (Quality Measurement turns DFS into Hill climbing (Variant

of generate and test strategy)

 Search efficiency may be improved if there is some way of ordering the

choices so that the most promising node is explored first.

 Moving through a tree of paths, hill climbing proceeds

 in depth-first order but the choices are ordered according to some

heuristic value (i.e, measure of remaining cost from current to goal

state).

2.5.3. Hill Climbing- Algorithm:

Generate and Test Algorithm

 Start

 - Generate a possible solution

 - Test to see, if it is goal.

 - If not go to start else quit

 End

Example of heuristic function

 Straight line (as the crow flies) distance between two cities may be a

heuristic measure of remaining distance in traveling salesman

problem .

Simple Hill climbing : Algorithm

 Store initially, the root node in a OPEN list (maintained as stack) ;

Found = false;

 While (OPEN empty and Found = false) Do

{

 Remove the top element from OPEN list and call it NODE;

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 23

 If NODE is the goal node, then Found = true else find SUCCs, of

NODE, if any, and sort SUCCs by estimated cost from NODE to

goal state and add them to the front of OPEN list.

} /* end while */

 If Found = true then return Yes otherwise return No

 Stop

Problems in hill climbing:

 There might be a position that is not a solution but from there no move

improves situations?

 This will happen if we have reached a Local maximum, a plateau or a

ridge.

 Local maximum: It is a state that is better than all its neighbors

but is not better than some other states farther away. All moves

appear to be worse.

Solution to this is to backtrack to some earlier state and try going in

different direction.

 Plateau: It is a flat area of the search space in which, a whole set

of neighboring states have the same value. It is not possible to

determine the best direction.

 Here make a big jump to some direction and try to get to new

section of the search space.

 Ridge: It is an area of search space that is higher than

surrounding areas, but that can not be traversed by single moves

in any one direction. (Special kind of local maxima).

 Here apply two or more rules before doing the test i.e., moving

in several directions at once.

2.5.4. Beam Search:

 Beam Search progresses level by level.

 It moves downward from the best W nodes only at each level. Other

nodes are ignored.

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 24

 W is called width of beam search.

 It is like a BFS where also expansion is level wise.

 Best nodes are decided on the heuristic cost associated with the node.

 If B is the branching factor, then there will be only W*B nodes under

consideration at any depth but only W nodes will be selected.

Algorithm – Beam search

 Found = false;

 NODE = Root_node;

 If NODE is the goal node, then Found = true else find SUCCs of NODE, if

any with its estimated cost and store in OPEN list;

 While (Found = false and not able to proceed further)

 {

 Sort OPEN list;

 Select top W elements from OPEN list and put it in W_OPEN list

and empty OPEN list;

 While (W_OPEN ≠ and Found = false)

 {

 Get NODE from W_OPEN;

 If NODE = Goal state then Found = true else

 {

 Find SUCCs of NODE, if any with its estimated cost

 store in OPEN list;

 }

 } // end while

} // end while

 If Found = true then return Yes otherwise return No and Stop

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 25

2.5.5. Best First Search

 Expand the best partial path.

 Here forward motion is carried out from the best open node so far in the

entire partially developed tree.

Algorithm (Best First Search)

 Initialize OPEN list by root node; CLOSED = ;

 Found = false;

 While (OPEN and Found = false) Do

 {

 If the first element is the goal node, then Found = true else remove

it from OPEN list and put it in CLOSED list.

 Add its successor, if any, in OPEN list.

 Sort the entire list by the value of some heuristic function that

assigns to each node, the estimate to reach to the goal node

 } /* end while */

 If the Found = true, then announce the success else announce failure.

 W = 2

 Continue till goal state is

found or not able to

proceed further

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 26

 Stop.

Observations

 In hill climbing, sorting is done on the successors nodes whereas in the

best first search sorting is done on the entire list.

 It is not guaranteed to find an optimal solution, but normally it finds

some solution faster than any other methods.

 The performance varies directly with the accuracy of the heuristic

evaluation function.

Termination Condition

 Instead of terminating when a path is found, terminate when the

shortest incomplete path is longer than the shortest complete path.

2.5.6.A* Method

 A* (“Aystar”) (Hart, 1972) method is a combination of branch & bound

and best search, combined with the dynamic programming principle.

 The heuristic function (or Evaluation function) for a node N is defined as

f(N) = g(N) + h(N)

 The function g is a measure of the cost of getting from the Start node

(initial state) to the current node.

 It is sum of costs of applying the rules that were applied along the

best path to the current node.

 The function h is an estimate of additional cost of getting from the

current node to the Goal node (final state).

 Here knowledge about the problem domain is exploited.

 A* algorithm is called OR graph / tree search algorithm.

Algorithm (A*)

 Initialization OPEN list with initial node; CLOSED= ; g = 0, f = h, Found

= false;

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 27

 While (OPEN ≠ and Found = false)

 {

 Remove the node with the lowest value of f from OPEN to CLOSED

and call it as a Best_Node.

 If Best_Node = Goal state then Found = true else

 {

 Generate the Succ of Best_Node

 For each Succ do

 {

 Compute g(Succ) = g(Best_Node) + cost of getting from

Best_Node to Succ.

 If Succ CLOSED then /* already processed */

{

 Call the matched node as OLD and add it in the

list of Best_Node successors.

 Ignore the Succ node and change the parent of

OLD, if required

 - If g(Succ) < g(OLD) then make parent of OLD to be Best_Node and

change the values of g and f for OLD.

 - Propogate the change to OLD’s children using depth first search

 - If g(Succ) >= g(OLD) then do nothing

}

 If Succ OPEN or CLOSED

 {

 Add it to the list of Best_Node’s successors

 Compute f(Succ) = g(Succ) + h(Succ)

 Put Succ on OPEN list with its f value

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 28

 }

 } /* for loop*/

 } /* else if */

} /* End while */

 If Found = true then report the best path else report failure

 Stop

Behavior of A* Algorithm

Underestimation

If we can guarantee that h never over estimates actual value from

current to goal, then A* algorithm is guaranteed to find an optimal path to a

goal, if one exists

Example – Underestimation – f=g+h

Here h is underestimated

Explanation -Example of Underestimation

 Assume the cost of all arcs to be 1. A is expanded to B, C and D.

 ‘f’ values for each node is computed.

 A

 Underestimated

 (1+3)B (1+4)C (1+5)D

3 moves away from goal

(2+3) E

3 moves away from goal

(3+3) F

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 29

 B is chosen to be expanded to E.

 We notice that f(E) = f(C) = 5

 Suppose we resolve in favor of E, the path currently we are expanding. E

is expanded to F.

 Clearly expansion of a node F is stopped as f(F)=6 and so we will now

expand C.

 Thus we see that by underestimating h(B), we have wasted some effort

but eventually discovered that B was farther away than we thought.

 Then we go back and try another path, and will find optimal path.

Explanation –Example of Overestimation

 A is expanded to B, C and D.

 Now B is expanded to E, E to F and F to G for a solution path of length 4.

 Consider a scenario when there a direct path from D to G with a solution

giving a path of length 2.

 A

Overestimated

 (1+3) B (1+4) C (1+5) D

 (2+2) E

(3+1)F

(4+0) G

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 30

 We will never find it because of overestimating h(D).

 Thus, we may find some other worse solution without ever expanding D.

 So by overestimating h, we can not be guaranteed to find the

cheaper path solution.

Admissibility of A*:

 A search algorithm is admissible, if

 for any graph, it always terminates in an optimal path from initial

state to goal state, if path exists.

 If heuristic function h is underestimate of actual value from current state

to goal state, then the it is called admissible function.

 Alternatively we can say that A* always terminates with the optimal path

in case

 h(x) is an admissible heuristic function.

Monotonicity

 A heuristic function h is monotone if

 states Xi and Xj such that Xj is successor of Xi

 h(Xi)– h(Xj) ≤ cost (Xi, Xj)

 where, cost (Xi, Xj) actual cost of going from Xi to Xj

 h (goal) = 0

 In this case, heuristic is locally admissible i.e., consistently finds the

minimal path to each state they encounter in the search.

 The monotone property in other words is that search space which is

every where locally consistent with heuristic function employed i.e.,

reaching each state along the shortest path from its ancestors.

 With monotonic heuristic, if a state is rediscovered, it is not necessary to

check whether the new path is shorter.

 Each monotonic heuristic is admissible

 A cost function f(n) is monotone if f(n) ≤f(succ(n)), n.

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 31

 For any admissible cost function f, we can construct a monotone

admissible function.

 Alternatively, the monotone property:

 that search space which is every where locally consistent with heuristic

function employed i.e., reaching each state along the shortest path from

its ancestors.

 With monotonic heuristic, if a state is rediscovered, it is not necessary to

check whether the new path is shorter.

 Each monotonic heuristic is admissible

 A cost function f(n) is monotone. if f(n) ≤f(succ(n)), n.

 For any admissible cost function f, we can construct a monotone

admissible function.

Example: Solve Eight puzzle problem using A* algorithm

 Evaluation function f (X) = g (X) + h(X)

 h (X) = the number of tiles not in their goal

 position in a given state X

 g(X) = depth of node X in the search tree

 Initial node has f(initial_node) = 4

 Apply A* algorithm to solve it.

 The choice of evaluation function critically determines search results.

 Start state Goal state

3 7 6 5 3 6

5 1 2 7 2

 4 8 4 1 8

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 32

Evaluation function - f for Eight Puzzle Problem:

 The choice of evaluation function critically determines search results.

 Consider Evaluation function

 f (X) = g (X) + h(X)

 h (X) = the number of tiles not in their goal

 position in a given state X

 g(X) = depth of node X in the search tree

 For Initial node

 f(initial_node) = 4

 Apply A* algorithm to solve it.

 Start state Goal state

3 7 6 5 3 6

5 1 2 7 2

 4 8 4 1 8

 Start State

 Search Tree f = 0+4

 3 7 6

5 1 2

4 8

up

(1+3)

left

(1+5)

right

 (1+5)

 3 7 6

5 2

4 1 8

 3 7 6

5 1 2

 4 8

 3 7 6

5 1 2

4 8

up

(2+3)

left

(2+3)

right

(2+4)

3 6

5 7 2

4 1 8

left

(3+2)

 3 7 6

 5 2

4 1 8

right

(3+4)

 3 7 6

5 2

4 1 8

 3 6

5 7 2

4 1 8

down

(4+1)

 3 6

5 7 2

4 1 8

5 3 6

 7 2

4 1 8

right 5 3 6

7 2

4 1 8

 Goal

State

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 33

Harder Problem

 Harder problems (8 puzzle) can’t be solved by heuristic function

defined earlier.

• A better estimate function is to be thought.

 h (X) = the sum of the distances of the tiles

 from their goal position in a given state X

• Initial node has h(initial_node) = 1+1+2+2+1+3+0+2=12

 Start State

 Search Tree f = 0+4

 3 7 6

5 1 2

4 8

up

(1+3)

left

(1+5)

right

 (1+5)

 3 7 6

5 2

4 1 8

 3 7 6

5 1 2

 4 8

 3 7 6

5 1 2

4 8

up

(2+3)

left

(2+3)

right

(2+4)

3 6

5 7 2

4 1 8

left

(3+2)

 3 7 6

 5 2

4 1 8

right

(3+4)

 3 7 6

5 2

4 1 8

 3 6

5 7 2

4 1 8

down

(4+1)

 3 6

5 7 2

4 1 8

5 3 6

 7 2

4 1 8

right 5 3 6

7 2

4 1 8

 Goal

State

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 34

2.5.7.Iterative Deepening A* & Constraint Satisfaction Problems

IDA* Algorithm

 At each iteration, perform a DFS cutting off a branch when its total cost

(g+h) exceeds a given threshold.

 This threshold starts at the estimate of the cost of the initial state, and

increases for each iteration of the algorithm.

 At each iteration, the threshold used for the next iteration is the

minimum cost of all values exceeded the current threshold.

 Given an admissible monotone cost function, IDA* will find a solution of

least cost or optimal solution if one exists.

Ist iteration (Threshhold = 5) O 5

 O O O O O

 6 8 4 8 9

IInd iteration (Threshhold = 6) O 5

 O O

 O O O O O O

 7 5 9 8 4 7

IIIrd iteration (Threshhold = 7) O 5

 O O

 O O O

 O O O O O O Goal

 8 9 4 4 8

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 35

 IDA* not only finds cheapest path to a solution but uses far less space

than A* and it expands approximately the same number of nodes as A*

in a tree search.

 An additional benefit of IDA* over A* is that it is simpler to implement, as

there are no open and closed lists to be maintained.

 A simple recursion performs DFS inside an outer loop to handle

iterations.

2.6. Constrained Satisfaction:

 Many AI problems can be viewed as problems of constrained satisfaction

in which the goal is to solve some problem state that satisfies a given set

of constraints.

 Example of such a problem are

 Crypt-Arithmetic puzzles.

 Many design tasks can also be viewed as constrained satisfaction

problems.

 N-Queen: Given the condition that no two queens on the same

row/column/diagonal attack each other.

 Map colouring: Given a map, colour three regions in blue, red and

black, such that no two neighbouring regions have the same

colour.

 Such problems do not require a new search methods.

They can be solved using any of the search strategies which can be augmented

with the list of constraints that change as parts of the problem are solved.

Algorithm:

 Until a complete solution is found or all paths have lead to dead ends

 {

 Select an unexpanded node of the search graph.

 Apply the constraint inference rules to the selected node to

generate all possible new constraints.

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 36

 If the set of constraints contain a contradiction, then report that

this path is a dead end.

 If the set of constraint describes a complete solution, then report

success.

 If neither a contradiction nor a complete solution has been found,

then

 apply the problem space rules to generate new partial

solutions that are consistent with the current set of

constraints.

 Insert these partial solutions into the search graph.

 }

2.6.1.Crypt-Arithmetic puzzle

 Problem Statement:

 Solve the following puzzle by assigning numeral (0-9) in such a way

that each letter is assigned unique digit which satisfy the following

addition.

 Constraints : No two letters have the same value. (The constraints

of arithmetic).

 Initial Problem State

 S = ? ; E = ? ;N = ? ; D = ? ; M = ? ;O = ? ; R = ? ;Y = ?

 Carries :

 C4 = ? ; C3 = ? ; C2 = ? ; C1 = ?

 S E N D

 + M O R E

M O N E Y

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 37

Constraint equations:

 Y = D + E C1

 E = N + R + C1 C2

 N = E + O + C2 C3

O = S + M + C3 C4

 M = C4

 We can easily see that M has to be non zero digit, so the value of C4 =1

1. M = C4 M = 1

2. O = S + M + C3 C4

 For C4 =1, S + M + C3 > 9

 S + 1 + C3 > 9 S+C3 > 8.

 If C3 = 0, then S = 9 else if C3 = 1,

 then S = 8 or 9.

 We see that for S = 9

 C3 = 0 or 1

C4 C3 C2 C1 Carry

 S E N D

 + M O R E

 M O N E Y

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 38

 It can be easily seen that C3 = 1 is not possible as O = S + M + C3

 O = 11 O has to be assigned digit 1 but 1 is already assigned

to M, so not possible.

 Therefore, only choice for C3 = 0, and thus O = 10. This implies

that O is assigned 0 (zero) digit.

 Therefore, O = 0

 M = 1, O = 0

Y = D + E C1

E = N + R + C1 C2

N = E + O + C2 C3

O = S + M + C3 C4

M = C4

Since C3 = 0; N = E + O + C2 produces no carry.

 As O = 0, N = E + C2 .

 Since N E, therefore, C2 = 1.

Hence N = E + 1

 Now E can take value from 2 to 8 {0,1,9 already assigned so far }

 If E = 2, then N = 3.

 Since C2 = 1, from E = N + R + C1 , we get 12 = N + R + C1

 If C1 = 0 then R = 9, which is not possible as we are on the

path with S = 9

 If C1 = 1 then R = 8, then

C4 C3 C2 C1 Carry

 S E N D

 + M O R E

 M O N E Y

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 39

 From Y = D + E , we get 10 + Y= D + 2 .

 For no value of D, we can get Y.

 Try similarly for E = 3, 4. We fail in each case.

Y = D + E C1

E = N + R + C1 C2

N = E + O + C2 C3

O = S + M + C3 C4

M = C4

 If E = 5, then N = 6

 Since C2 = 1, from E = N + R + C1 , we get 15 = N + R + C1 ,

 If C1 = 0 then R = 9, which is not possible as we are on the path

with S = 9.

 If C1 = 1 then R = 8, then

 From Y = D + E , we get 10 + Y= D + 5 i.e., 5 + Y = D.

 If Y = 2 then D = 7. These values are possible.

 Hence we get the final solution as given below and on

backtracking, we may find more solutions.

 S = 9 ; E = 5 ; N = 6 ; D = 7 ;

 M = 1 ; O = 0 ; R = 8 ;Y = 2

C4 C3 C2 C1 Carry

 S E N D

 + M O R E

 M O N E Y

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 40

Solve the following given problem using Constraint Satisfaction

Constraints:

 Y = D + E C1

 E = N + R + C1 C2

 N = E + O + C2 C3

O = S + M + C3 C4

 M = C4

Initial State

M = 1 C4 = 1

O = 1 + S + C3

 O

S = 9 S = 8

 O

C3 = 0 C3 = 1

O = 0 O = 1

Fixed

M = 1

O = 0

N = E + O + C2 = E + C2 C2 = 1 (must) N = E + 1

 E = 2 E = 3 ….. E = 5

 N = 3 N = 6

 E = N + R + C1 E = N + R + C1

 10 + 2 = 3 + R + C1 10 + 5 = 6 + R + C1

 O O

R = 9 R = 8 R = 9 R = 8

C1 =0 C1 = 1 C1 = 0 C1 = 1

 O O

 10 + Y = D + E = D + 2 10 + Y = D + E = D + 5

 O O

 D = 8 D = 9 D = 7

Y = 0 Y = 1 Y = 2

The first solution obtained is:

M = 1, O = 0, S = 9, E = 5, N = 6, R = 8, D = 7, Y = 2

 C4 C3 C2 C1 Carries

 B A S E

 + B A L L

 G A M E S

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 41

Constraints equations are:

E + L = S C1

S + L + C1= E C2

2A + C2 = M C3

2B + C3 = A C4

G = C4

Initial Problem State

G = ?; A = ?;M = ?; E = ?; S = ?; B = ?; L = ?

1. G = C4 G = 1

2. 2B+ C3 = A C4

2.1 Since C4 = 1, therefore, 2B+ C3 > 9 B can take values from 5 to 9.

2.2 Try the following steps for each value of B from 5 to 9 till we get a

possible value of B.

 if C3 = 0 A = 0 M = 0 for C2 = 0 or M = 1 for C2 = 1

 If B = 5

 if C3 = 1 A = 1 (as G = 1 already)

 For B = 6 we get similar contradiction while generating the search tree.

 If B = 7 , then for C3 = 0, we get A = 4 M = 8 if C2 = 0 that leads to

contradiction, so this path is pruned. If C2 = 1, then M = 9 .

3. Let us solve S + L + C1 = E and E + L = S

 Using both equations, we get 2L + C1 = 0 L = 5 and C1 = 0

 Using L = 5, we get S + 5 = E that should generate carry C2 = 1 as shown

above

 So S+5 > 9 Possible values for E are {2, 3, 6, 8} (with carry bit C2 = 1)

 If E = 2 then S + 5 = 12 S = 7 (as B = 7 already)

 If E = 3 then S + 5 = 13 S = 8.

 Therefore E = 3 and S = 8 are fixed up.

4. Hence we get the final solution as given below and on backtracking, we may find

more solutions. In this case we get only one solution.

G = 1; A = 4; M = 9; E = 3; S = 8;B = 7; L = 5

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 42

2.7.Problem Reduction & Game Playing

2..7.1.Problem Reduction

 So far search strategies discussed were for OR graphs.

 Here several arcs indicate a different ways of solving problem.

 Another kind of structure is AND-OR graph (tree).

 Useful for representing the solution of problem by decomposing it into

smaller sub-problems.

 Each sub-problem is solved and final solution is obtained by combining

solutions of each sub-problem.

 Decomposition generates arcs that we will call AND arc.

 One AND arc may point to any number of successors, all of which must

be solved.

 Such structure is called AND–OR graph rather than simply AND graph.

Example of AND-OR Tree

AND–OR Graph

 To find a solution in AND–OR graph, we need an algorithm similar

to A*

 with the ability to handle AND arc appropriately.

 In search for AND-OR graph, we will also use the value of heuristic

function f for each node.

AND–OR Graph Search

 Traverse AND-OR graph, starting from the initial node and follow the

current best path.

 Acquire TV

Steal TV Earn Money Buy TV

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 43

 Accumulate the set of nodes that are on the best path which have not yet

been expanded.

 Pick up one of these unexpanded nodes and expand it.

 Add its successors to the graph and compute f (using only h) for each of

them.

 Change the f estimate of newly expanded node to reflect the new

information provided by its successors.

 Propagate this change backward through the graph to the start.

 Mark the best path which could be different from the current best path.

 Propagation of revised cost in AND-OR graph was not there in A*.

 Consider AND-OR graph given on next slide.

 Let us assume that each arc with single successor will have a cost

of 1 and each AND arc with multiple successor will have a cost of 1

for each of its components for the sake of simplicity.

 Here the numbers listed in the circular brackets () are estimated

cost and the revised costs are enclosed in square brackets [].

 Thick lines indicate paths from a given node.

 Initially we start from start node A and compute heuristic values for

each of its successors, say {B, (C and D)} as {19, (8, 9)}.

 The estimated cost of paths from A to B is 20 (19 + cost of one arc from A

to B) and from A to (C and D) path is 19 (8+9 + cost of two arcs A to C

and A to D).

 A

 (20) (19) initially estimated values

 [18] [28] revised values

 B C D

 (19) (8) (9) estimated values

E [17] F G [9] H I [17] J revised values

(5) (10) (3) (4) (8) (7) estimated values

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 44

 The path from A to (C and D) seems to be better. So expend this AND

path by expending C to {(G and H)} and D to {(I and J)}.

 Now heuristic values of G, H, I and J are 3, 4, 8 and 7 respectively.

 This leads to revised cost of C and D as 9 and 17 respectively.

 These values are propagated up and the revised costs of path from A

through (C and D) is calculated as 28 (9 + 17 + cost of arcs A to C and A

to D).

 Now the revised cost of this path is 28 instead of earlier estimation of 19

and this path is no longer a best path.

 Then choose path from A to B for expansion.

 After expansion we see that heuristic value of node B is 17 thus making

cost of path from A to B to be 18.

 This path is still best path so far, so further explore path from A to B.

 The process continues until either a solution is found or all paths have

lead to dead ends, indicating that there is no solution.

Cyclic Graph

 If a graph is cyclic (containing cycle) then the algorithm discussed earlier

does not operate unless modified as follows:

 If successor is generated and found to be already in the graph,

then

 we must check that the node in the graph is not an ancestor

of the node being expanded.

 If not, then newly discovered path to the node be entered in

the graph.

 We can now state precisely the steps taken for performing heuristic

search of an AND-OR graph.

 Algorithm for searching AND-OR graph is called AO*

 Here we maintain single structure G, representing the part of the

search graph explicitly generated so far rather than two lists,

OPEN and CLOSED as in previous algorithms.

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 45

 Each node in the graph will

 point both down to its immediate successors and up to its

immediate predecessor.

 have an h value (an estimate of the cost of a path from current

node to a set of solution nodes) associated with it.

 We will not store g (cost from start to current node) as it is not

possible to compute a single such value since there may be many

paths to the same state.

 The value g is also not necessary because of the top-down

traversing of the best-known path which guarantees that only

nodes on the best path will ever be considered for expansion.

 So h will be good estimate for AND/OR graph search.

The "Solve" labeling Procedure

 A terminal node is labeled as

 "solved" if it is a goal node (representing a solution of sub-problem)

 "unsolved" otherwise (as we can not further reduce it)

 A non-terminal AND node labeled as

 "solved" if all of its successors are "solved".

 "unsolved" as soon as one of its successors is labeled "unsolved".

 A non-terminal OR node is labeled as

 "solved" as soon as one of its successors is labeled "solved".

 "unsolved" if all its successors are "unsolved".

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 46

Example

1. After one cycle

A (3)

 B (2) C (1) D (1)

2. After two cycle

A (4)

 B (5) C (1) D (1)

 Best path

 E (4) F (6)

3. After three cycle

A (5)

 B (5) C (2) D (1)

 Solved

 E (4) F (6)

 G (2) H (0) I (0)

 Solved Solved

4. After four cycle

A (5)

 Solved

 B (5) C (2) D (1)

 Solved

 E (4) F (6)

 G (2) H (0) I (0)

 Solved Solved

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 47

2.7.2.AO* Algorithm

 Let graph G consists initially the start node. Call it INIT.

 Compute h(INIT).

 Until INIT is SOLVED or h(INIT) > Threshold or Un_Sol

 {1

 Traverse the graph starting from INIT and follow the current best

path.

 Accumulate the set of nodes that are on the path which have not

yet been expanded or labeled as SOLVED.

 Select one of these unexpanded nodes. Call it NODE and expand it.

 Generate the successors of NODE. If there are none, then assign

Threshold as the value of this NODE else for each SUCC that is

also not ancestor of NODE do the following

 {2

 Add SUCC to the graph G and compute h for each.

 If h(SUCC) = 0 then it is a solution node and label it as

SOLVED. Propagate the newly discovered information up the

graph as follows:

 Initialize S with NODE.

 Until S is empty

 {3

 Select from S, a node such that the selected node has no

ancestor in G occurring in S /* to avoid cycle */.

 Call it CURRENT and remove it from S.

 Compute the cost of each arcs emerging from CURRENT.

 Cost of AND arc = (h of each of the nodes at the end

of the arc) + (cost of arc itself)

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 48

 Assign the minimum of the costs as new h value of

CURRENT.

 Mark the best path out of CURRENT (with

minimum cost).

 Mark CURRENT node as SOLVED if all of the nodes

connected to it through the new marked arc have been

labeled SOLVED.

 If CURRENT has been marked SOLVED or if the cost of

CURRENT was just changed, then new status must be

propagated back up the graph. So add to S all of the

ancestors of CURRENT.

 3}

2}

1}

Longer Path May be Better

 Consider another example

Explanation

 Nodes are numbered in order of their generation.

 Now node 10 is expanded at the next step and one of its successors is

node 5.

 This new path to 5 is longer than the previous path to 5 going through 3.

 1

 2 3 4 Unsolvable

5 6

7 8

9 10

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 49

 But since the path through 3 will only lead to a solution as there is no

solution to 4, so the path through 10 is better.

AO* may fail to take into account an interaction between sub-goals.

 Assume that both C and E ultimately lead to a solution.

 According to AO* algorithm, both C and D must be solved to solve A.

 Algorithm considers the solution of D as a completely separate process

from the solution of C.

 As there is no interaction between these two sub-goals).

 Looking just at the alternative from D, the path from node E is the best

path but it turns out that C is must anyways, so it is better also to use it

to satisfy D.

 But to solve D, the path from node E is the best path and will try to solve

E.

AO* algorithm does not consider such interactions, so it will find a non-optimal

path.

2.8. Game Playing

 Games require different search procedures.

 Basically they are based on generate and test philosophy.

 The generator generates individual move in the search space, each of

which is then evaluated by the tester and the most promising one is

chosen.

A (10)

D (3)

E (2) C (5)

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 50

 Game playing is most practical and direct application of the heuristic

search problem solving paradigm.

 It is clear that to improve the effectiveness of a search for problem

solving programs, there are two things that can be done:

 Improve the generate procedure so that only good moves (paths)

are generated.

 Improve the test procedure so that the best moves (paths) will be

recognized and explored first.

 Let us consider only two player discrete, perfect information games, such

as tic-tac-toe, chess, checkers etc.

 Discrete because they contain finite number of states or

configurations.

 Perfect-information because both players have access to the

same information about the game in progress (card games are not

perfect - information games).

 Two-player games are easier to imagine & think and more common to

play.

 Typical characteristic of the games is to ‘look ahead’ at future positions

in order to succeed.

 There is a natural correspondence between such games and state space

problems.

 For example,

 State Space Game Problem

 states - legal board positions

 operators - legal moves

 goal - winning positions

 The game begins from a specified initial state and ends in position that

can be declared win for one, loss for other or possibly a draw.

 Game tree is an explicit representation of all possible plays of the game.

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 51

 The root node is an initial position of the game.

 Its successors are the positions that the first player can reach in

one move, and

 Their successors are the positions resulting from the second

player's replies and so on.

 Terminal or leaf nodes are represented by WIN, LOSS or DRAW.

 Each path from the root to a terminal node represents a different

complete play of the game.

Correspondence with AND/OR graph

 The correspondence between game tree and AND/OR tree is obvious.

 The moves available to one player from a given position can be

represented by OR links.

 Whereas the moves available to his opponent are AND links.

 The trees representing games contain two types of nodes:

 MAX- nodes (nodes with OR links, maximizing its gain)

 MIN - nodes (nodes with AND links, minimizing opponent’s its

gain)

 The leaf nodes are leveled WIN, LOSS or DRAW depending on

 whether they represent a win, loss or draw position from MAX's

view point.

 Each non-terminal nodes in the game tree can be labeled WIN, LOSS or

DRAW by a bottom up process similar to the "Solve" labeling procedure

in AND/OR graph.

 If j is a non-terminal MAX node, then

 WIN , if any of j's successor is a WIN

STATUS (j) = LOSS , if all j's successor are LOSS

 DRAW, if any of j's successor is a

 DRAW and none is WIN

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 52

 If j is a non-terminal MIN node, then

 WIN , if all j's successor is a WIN

STATUS (j) = LOSS , if any of j's successor are LOSS

 DRAW, if any of j's successor is a

 DRAW and none is LOSS

 The function STATUS(j) should be interpreted as the best terminal status

MAX can achieve from position j, if MAX plays optimally against a perfect

opponent.

 Example: Consider a game tree on next slide.

 Let us denote

• MAX X

• MIN Y,

• WIN W,

• DRAW D and

• LOSS L.

 The status of the leaf nodes is assigned by the rules of the game

whereas, those of non-terminal nodes are determined by the

labeling procedure.

 Solving a game tree means labeling the root node by WIN, LOSS,

or DRAW from Max player point of view.

MAX X (W)

MIN Y (D) Y (W) Y(L)

MAX X (W) X (D) X (W) X (W) X(D) X (L)

MIN Y(D) Y (L) Y(W) Y (L) Y(W) Y(L) Y(L) Y (D)

MAX X (L) X (W) X (L) X (D) X (W) X (W) X (L) X (W)

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 53

• Labeling is done from MAX point of view.

• Associated with each root label, there is an optimal playing strategy

which prescribes how that label can be guaranteed regardless of MIN.

• Highlighted paths are optimal paths for MAX to play.

• An optimal strategy for MAX is a sub-tree whose all nodes are

WIN.(See fig on the previous slides)

2.9. Look-ahead Strategy

 The status labeling procedure described earlier requires that a complete

game tree or at least sizable portion of it be generated.

 For most of the games, tree of possibilities is far too large to be generated

and evaluated backward from the terminal nodes in order to determine

the optimal first move.

Examples:

 Checkers : Non-terminal nodes are 1040 and 1021 centuries required if 3

billion nodes could be generated each second.

 Chess : 10120 nodes and 10101 centuries.

 So this approach is not practical

Evaluation Function

 Having no practical way of evaluating the exact status of successor

game positions, one may naturally use heuristic approximation.

 Experience shows that certain features in a game position contribute to

its strength, whereas others tend to weaken it.

 The static evaluation function converts all judgments about board

situations into a single, overall quality number.

www.Jntufastupdates.com

III Year CSE II Sem Artificial Intelligence Unit II

Prepared by N Md Jubair basha, Associate. Professor, CSED,KHIT Page 54

One - ply search
 A (8)

 B (8) C (3) D (-2)

Two - ply search
 A (2)

 B (-6) C (2) D (-4)

E F G H I J K

 (9) (-6) (0) (3) (2) (-4) (-3)

www.Jntufastupdates.com

